If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-50x=828
We move all terms to the left:
x^2-50x-(828)=0
a = 1; b = -50; c = -828;
Δ = b2-4ac
Δ = -502-4·1·(-828)
Δ = 5812
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5812}=\sqrt{4*1453}=\sqrt{4}*\sqrt{1453}=2\sqrt{1453}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-50)-2\sqrt{1453}}{2*1}=\frac{50-2\sqrt{1453}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-50)+2\sqrt{1453}}{2*1}=\frac{50+2\sqrt{1453}}{2} $
| 7n-21=0 | | 828=50x-x^2 | | 2x+1(×)=73 | | x/46=18/50-x | | 10.1-x=7.238 | | 4x2-6-8x=0 | | 102+10x-8=180 | | 5×y-10=×2y=3 | | −7x−20=7x+78. | | 3x+7x-6=2(5x+4) | | 4x^2-60x-504=0 | | 3x-9(3x+14)=-126 | | x12=39 | | M=-10-4m | | h=-16^2+44+10 | | 5x-4(x+12)=34 | | -1/2y=-3-3 | | 5x-5=-91-7x | | 4z-62=78 | | 2(x+14)=45 | | 4z-76=64 | | -46-34x=12x+1/5 | | 3s=7(2/7-3/7s)-10 | | 5(x-6)+4=4+7x-6 | | 244+2x=360 | | -4c-8=4(-3c+2) | | m=7.1 | | 3x-9=5x+18 | | 4+11x=-6=x | | 1.44=1/21.8x | | 3x+9=5x+18 | | 102x-15=2(4+7x) |